中文

UV Subtypes

-From Wikipedia, the free encyclopedia




The electromagnetic spectrum of ultraviolet radiation (UVR), defined most broadly as 10–400 nanometers, can be subdivided into a number of ranges recommended by the ISO standard ISO-21348:



A variety of solid-state and vacuum devices have been explored for use in different parts of the UV spectrum. Many approaches seek to adapt visible light-sensing devices, but these can suffer from unwanted response to visible light and various instabilities. Ultraviolet can be detected by suitable photodiodes and photocathodes, which can be tailored to be sensitive to different parts of the UV spectrum. Sensitive ultraviolet photomultipliers are available. Spectrometers and radiometers are made for measurement of UV radiation. Silicon detectors are used across the spectrum.


People cannot perceive UV directly, since the lens of the human eye blocks most radiation in the wavelength range of 300–400 nm; shorter wavelengths are blocked by the cornea. Nevertheless, the photoreceptors of the retina are sensitive to near-UV, and people lacking a lens (a condition known as aphakia) perceive near-UV as whitish-blue or whitish-violet.


Vacuum UV, or VUV, wavelengths (shorter than 200 nm) are strongly absorbed by molecular oxygen in the air, though the longer wavelengths of about 150–200 nm can propagate through nitrogen. Scientific instruments can therefore utilize this spectral range by operating in an oxygen-free atmosphere (commonly pure nitrogen), without the need for costly vacuum chambers. Significant examples include 193 nm photolithography equipment (for semiconductor manufacturing) and circular dichroism spectrometers.


Technology for VUV instrumentation was largely driven by solar astronomy for many decades. While optics can be used to remove unwanted visible light that contaminates the VUV, in general, detectors can be limited by their response to non-VUV radiation, and the development of "solar-blind" devices has been an important area of research. Wide-gap solid-state devices or vacuum devices with high-cutoff photocathodes can be attractive compared to silicon diodes.


Extreme UV (EUV or sometimes XUV) is characterized by a transition in the physics of interaction with matter. Wavelengths longer than about 30 nm interact mainly with the outer valence electrons of atoms, while wavelengths shorter than that interact mainly with inner-shell electrons and nuclei. The long end of the EUV spectrum is set by a prominent He+ spectral line at 30.4 nm. EUV is strongly absorbed by most known materials, but it is possible to synthesize multilayer optics that reflect up to about 50% of EUV radiation at normal incidence. This technology was pioneered by the NIXT and MSSTA sounding rockets in the 1990s, and has been used to make telescopes for solar imaging.

TEL:+86-755-23719504
EMAIL:sales@raysr.cn
ADD:Room507, Tangfeng Business Building, Liutang Ave, Xin’an Sub-district, BaoanDistrict, Shenzhen 518101, Guangdong,China.
Shenzhen RAYSR Technology Co.,Ltd.